Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations.
نویسندگان
چکیده
Internal tandem duplication (ITD) mutations of the juxtamembrane domain-coding sequence of the FLT3 gene are found in up to 34% of patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. FLT3/ITDs result in constitutive activation of the tyrosine kinase domain and transform growth factor-dependent cell lines. FLT3 activation leads to antiapoptotic and proliferative signals, but little is known about the impact of FLT3/ITDs on differentiation. This study was designed to investigate the effect of FLT3/ITD expression on the differentiation of the 32Dcl3 (32D) myeloblastic cell line to neutrophils in response to granulocyte colony-stimulating factor (G-CSF). Expression of FLT3/ITD completely blocked morphologic differentiation and induction of myeloperoxidase (MPO), lysozyme, and CCAAT/enhancer-binding protein epsilon (C/EBPepsilon) in response to G-CSF. Wild-type FLT3 and vector-transfected 32D cells were able to differentiate, although the maturation of FLT3-transfected cells was delayed by FLT3 ligand (FL) stimulation. CEP-701, a potent FLT3 tyrosine kinase inhibitor, overcame the morphologic block in differentiation caused by FLT3/ITD expression and allowed G-CSF induction of myeloid maturation markers. These findings suggest that blocking differentiation may be one of the mechanisms by which FLT3/ITDs contribute to leukemogenesis. CEP-701 and other FLT3 inhibitors may be useful for overcoming the block to differentiation (as well as the block to apoptosis) in the leukemic cells of patients with AML.
منابع مشابه
Evaluation of the CD123 Expression and FLT3 Gene Mutations in Patients with Acute Myeloid Leukemia
Background and Objective: Identification of cytogenetic and molecular changes plays an important role in acute myeloid leukemia (AML) patients. Thus, they are used in classification, prognosis and treatment of the disease. The CD123 expression and FLT3 gene mutations are also the variations that may assist in prognosis and treatment of patients with AML.Methods:</...
متن کاملDifferences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants
Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...
متن کاملThe Association of FLT3-ITD Gene Mutation with Bone Marrow Blast Cell Count, CD34, Cyclin D1, Bcl-xL and hENT1 Expression in Acute Myeloid Leukemia Patients
Background & Objective: FLT3-ITD has been recently used as a molecular prognostic marker for risk classification in acute myeloid leukemia (AML) therapy. In this study we aimed to investigate the association of FLT3-ITD gene mutation with bone marrow blast cell count, CD34 ex...
متن کاملRGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation.
Activating fetal liver tyrosine kinase 3 (Flt3) mutations represent the most common genetic aberrations in acute myeloid leukemia (AML). Most commonly, they occur as internal tandem duplications in the juxtamembrane domain (Flt3-ITD) that transform myeloid cells in vitro and in vivo and that induce aberrant signaling and biologic functions. We identified RGS2, a regulator of G-protein signaling...
متن کاملNEOPLASIA RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation
Activating fetal liver tyrosine kinase 3 (Flt3) mutations represent the most common genetic aberrations in acute myeloid leukemia (AML). Most commonly, they occur as internal tandem duplications in the juxtamembrane domain (Flt3-ITD) that transform myeloid cells in vitro and in vivo and that induce aberrant signaling and biologic functions. We identified RGS2, a regulator of G-protein signaling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 12 شماره
صفحات -
تاریخ انتشار 2002